# CSRNet-pytorch **Repository Path**: zsnlife/CSRNet-pytorch ## Basic Information - **Project Name**: CSRNet-pytorch - **Description**: CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-05-24 - **Last Updated**: 2021-03-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CSRNet-pytorch This is the PyTorch version repo for [CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes](https://arxiv.org/abs/1802.10062) in CVPR 2018, which delivered a state-of-the-art, straightforward and end-to-end architecture for crowd counting tasks. ## Datasets ShanghaiTech Dataset: [Google Drive](https://drive.google.com/open?id=16dhJn7k4FWVwByRsQAEpl9lwjuV03jVI) ## Prerequisites We strongly recommend Anaconda as the environment. Python: 2.7 PyTorch: 0.4.0 CUDA: 9.2 ## Ground Truth Please follow the `make_dataset.ipynb ` to generate the ground truth. It shall take some time to generate the dynamic ground truth. Note you need to generate your own json file. ## Training Process Try `python train.py train.json val.json 0 0` to start training process. ## Validation Follow the `val.ipynb` to try the validation. You can try to modify the notebook and see the output of each image. ## Results ShanghaiA MAE: 66.4 [Google Drive](https://drive.google.com/open?id=1Z-atzS5Y2pOd-nEWqZRVBDMYJDreGWHH) ShanghaiB MAE: 10.6 [Google Drive](https://drive.google.com/open?id=1zKn6YlLW3Z9ocgPbP99oz7r2nC7_TBXK) ## References If you find the CSRNet useful, please cite our paper. Thank you! ``` @inproceedings{li2018csrnet, title={CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes}, author={Li, Yuhong and Zhang, Xiaofan and Chen, Deming}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={1091--1100}, year={2018} } ``` Please cite the Shanghai datasets and other works if you use them. ``` @inproceedings{zhang2016single, title={Single-image crowd counting via multi-column convolutional neural network}, author={Zhang, Yingying and Zhou, Desen and Chen, Siqin and Gao, Shenghua and Ma, Yi}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={589--597}, year={2016} } ```