# NumPyANN **Repository Path**: zhufengGNSS/NumPyANN ## Basic Information - **Project Name**: NumPyANN - **Description**: Implementation of Artificial Neural Networks using NumPy - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NumPyANN: Building Neural Networks using NumPy [NumPyANN](https://github.com/ahmedfgad/NumPyCNN) is a Python project for building artificial neural networks using NumPy. [NumPyANN](https://github.com/ahmedfgad/NumPyCNN) is part of [PyGAD](https://pypi.org/project/pygad) which is an open-source Python 3 library for implementing the genetic algorithm and optimizing machine learning algorithms. Both regression and classification neural networks are supported starting from PyGAD 2.7.0. Check documentation of the [NeuralGenetic](https://github.com/ahmedfgad/NeuralGenetic) project in the PyGAD's documentation: https://pygad.readthedocs.io/en/latest/README_pygad_nn_ReadTheDocs.html The library is under active development and more features are added regularly. If you want a feature to be supported, please check the **Contact Us** section to send a request. Before using [NumPyANN](https://github.com/ahmedfgad/NumPyCNN), install PyGAD. # Donation You can donate via [Open Collective](https://opencollective.com/pygad): [opencollective.com/pygad](https://opencollective.com/pygad). To donate using PayPal, use either this link: [paypal.me/ahmedfgad](https://paypal.me/ahmedfgad) or the e-mail address ahmed.f.gad@gmail.com. # Tutorial Project **IMPORTANT** If you are coming for the code of the tutorial titled **[Artificial Neural Network Implementation using NumPy and Classification of the Fruits360 Image Dataset](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad)**, then it has been moved to the [TutorialProject](https://github.com/ahmedfgad/NumPyANN/tree/master/TutorialProject) directory on 10 May 2020. # Installation To install [PyGAD](https://pypi.org/project/pygad), simply use pip to download and install the library from [PyPI](https://pypi.org/project/pygad) (Python Package Index). The library lives a PyPI at this page https://pypi.org/project/pygad. For Windows, issue the following command: ```python pip install pygad ``` For Linux and Mac, replace `pip` by use `pip3` because the library only supports Python 3. ```python pip3 install pygad ``` PyGAD is developed in Python 3.7.3 and depends on NumPy for creating and manipulating arrays and Matplotlib for creating figures. The exact NumPy version used in developing PyGAD is 1.16.4. For Matplotlib, the version is 3.1.0. To get started with PyGAD, please read the documentation at [Read The Docs](https://pygad.readthedocs.io/) https://pygad.readthedocs.io. # PyGAD Source Code The source code of the PyGAD' modules is found in the following GitHub projects: - [pygad](https://github.com/ahmedfgad/GeneticAlgorithmPython): (https://github.com/ahmedfgad/GeneticAlgorithmPython) - [pygad.nn](https://github.com/ahmedfgad/NumPyANN): https://github.com/ahmedfgad/NumPyANN - [pygad.gann](https://github.com/ahmedfgad/NeuralGenetic): https://github.com/ahmedfgad/NeuralGenetic - [pygad.cnn](https://github.com/ahmedfgad/NumPyCNN): https://github.com/ahmedfgad/NumPyCNN - [pygad.gacnn](https://github.com/ahmedfgad/CNNGenetic): https://github.com/ahmedfgad/CNNGenetic - [pygad.kerasga](https://github.com/ahmedfgad/KerasGA): https://github.com/ahmedfgad/KerasGA The documentation of PyGAD is available at [Read The Docs](https://pygad.readthedocs.io/) https://pygad.readthedocs.io. # PyGAD Documentation The documentation of the PyGAD library is available at [Read The Docs](https://pygad.readthedocs.io) at this link: https://pygad.readthedocs.io. It discusses the modules supported by PyGAD, all its classes, methods, attribute, and functions. For each module, a number of examples are given. If there is an issue using PyGAD, feel free to post at issue in this [GitHub repository](https://github.com/ahmedfgad/GeneticAlgorithmPython) https://github.com/ahmedfgad/GeneticAlgorithmPython or by sending an e-mail to ahmed.f.gad@gmail.com. If you built a project that uses PyGAD, then please drop an e-mail to ahmed.f.gad@gmail.com with the following information so that your project is included in the documentation. - Project title - Brief description - Preferably, a link that directs the readers to your project Please check the **Contact Us** section for more contact details. # Life Cycle of PyGAD The next figure lists the different stages in the lifecycle of an instance of the `pygad.GA` class. Note that PyGAD stops when either all generations are completed or when the function passed to the `on_generation` parameter returns the string `stop`. ![PyGAD Lifecycle](https://user-images.githubusercontent.com/16560492/89446279-9c6f8380-d754-11ea-83fd-a60ea2f53b85.jpg) The next code implements all the callback functions to trace the execution of the genetic algorithm. Each callback function prints its name. ```python import pygad import numpy function_inputs = [4,-2,3.5,5,-11,-4.7] desired_output = 44 def fitness_func(solution, solution_idx): output = numpy.sum(solution*function_inputs) fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001) return fitness fitness_function = fitness_func def on_start(ga_instance): print("on_start()") def on_fitness(ga_instance, population_fitness): print("on_fitness()") def on_parents(ga_instance, selected_parents): print("on_parents()") def on_crossover(ga_instance, offspring_crossover): print("on_crossover()") def on_mutation(ga_instance, offspring_mutation): print("on_mutation()") def on_generation(ga_instance): print("on_generation()") def on_stop(ga_instance, last_population_fitness): print("on_stop()") ga_instance = pygad.GA(num_generations=3, num_parents_mating=5, fitness_func=fitness_function, sol_per_pop=10, num_genes=len(function_inputs), on_start=on_start, on_fitness=on_fitness, on_parents=on_parents, on_crossover=on_crossover, on_mutation=on_mutation, on_generation=on_generation, on_stop=on_stop) ga_instance.run() ``` Based on the used 3 generations as assigned to the `num_generations` argument, here is the output. ``` on_start() on_fitness() on_parents() on_crossover() on_mutation() on_generation() on_fitness() on_parents() on_crossover() on_mutation() on_generation() on_fitness() on_parents() on_crossover() on_mutation() on_generation() on_stop() ``` # Example Check the [PyGAD's documentation](https://pygad.readthedocs.io/en/latest/README_pygad_nn_ReadTheDocs.html) for information about the implementation of this example. ```python import numpy import pygad.nn # Preparing the NumPy array of the inputs. data_inputs = numpy.array([[1, 1], [1, 0], [0, 1], [0, 0]]) # Preparing the NumPy array of the outputs. data_outputs = numpy.array([0, 1, 1, 0]) # The number of inputs (i.e. feature vector length) per sample num_inputs = data_inputs.shape[1] # Number of outputs per sample num_outputs = 2 HL1_neurons = 2 # Building the network architecture. input_layer = pygad.nn.InputLayer(num_inputs) hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu") output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="softmax") # Training the network. pygad.nn.train(num_epochs=10, last_layer=output_layer, data_inputs=data_inputs, data_outputs=data_outputs, learning_rate=0.01) # Using the trained network for predictions. predictions = pygad.nn.predict(last_layer=output_layer, data_inputs=data_inputs) # Calculating some statistics num_wrong = numpy.where(predictions != data_outputs)[0] num_correct = data_outputs.size - num_wrong.size accuracy = 100 * (num_correct/data_outputs.size) print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct)) print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size)) print("Classification accuracy : {accuracy}.".format(accuracy=accuracy)) ``` # For More Information There are different resources that can be used to get started with the genetic algorithm and building it in Python. ## Tutorial: Implementing Genetic Algorithm in Python To start with coding the genetic algorithm, you can check the tutorial titled [**Genetic Algorithm Implementation in Python**](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) available at these links: - [LinkedIn](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) - [Towards Data Science](https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6) - [KDnuggets](https://www.kdnuggets.com/2018/07/genetic-algorithm-implementation-python.html) [This tutorial](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) is prepared based on a previous version of the project but it still a good resource to start with coding the genetic algorithm. [![Genetic Algorithm Implementation in Python](https://user-images.githubusercontent.com/16560492/78830052-a3c19300-79e7-11ea-8b9b-4b343ea4049c.png)](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) ## Tutorial: Introduction to Genetic Algorithm Get started with the genetic algorithm by reading the tutorial titled [**Introduction to Optimization with Genetic Algorithm**](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad) which is available at these links: * [LinkedIn](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad) * [Towards Data Science](https://www.kdnuggets.com/2018/03/introduction-optimization-with-genetic-algorithm.html) * [KDnuggets](https://towardsdatascience.com/introduction-to-optimization-with-genetic-algorithm-2f5001d9964b) [![Introduction to Genetic Algorithm](https://user-images.githubusercontent.com/16560492/82078259-26252d00-96e1-11ea-9a02-52a99e1054b9.jpg)](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad) ## Tutorial: Build Neural Networks in Python Read about building neural networks in Python through the tutorial titled [**Artificial Neural Network Implementation using NumPy and Classification of the Fruits360 Image Dataset**](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad) available at these links: * [LinkedIn](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad) * [Towards Data Science](https://towardsdatascience.com/artificial-neural-network-implementation-using-numpy-and-classification-of-the-fruits360-image-3c56affa4491) * [KDnuggets](https://www.kdnuggets.com/2019/02/artificial-neural-network-implementation-using-numpy-and-image-classification.html) [![Building Neural Networks Python](https://user-images.githubusercontent.com/16560492/82078281-30472b80-96e1-11ea-8017-6a1f4383d602.jpg)](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad) ## Tutorial: Optimize Neural Networks with Genetic Algorithm Read about training neural networks using the genetic algorithm through the tutorial titled [**Artificial Neural Networks Optimization using Genetic Algorithm with Python**](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad) available at these links: - [LinkedIn](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad) - [Towards Data Science](https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e) - [KDnuggets](https://www.kdnuggets.com/2019/03/artificial-neural-networks-optimization-genetic-algorithm-python.html) [![Training Neural Networks using Genetic Algorithm Python](https://user-images.githubusercontent.com/16560492/82078300-376e3980-96e1-11ea-821c-aa6b8ceb44d4.jpg)](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad) ## Tutorial: Building CNN in Python To start with coding the genetic algorithm, you can check the tutorial titled [**Building Convolutional Neural Network using NumPy from Scratch**](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad) available at these links: - [LinkedIn](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad) - [Towards Data Science](https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a) - [KDnuggets](https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html) - [Chinese Translation](http://m.aliyun.com/yunqi/articles/585741) [This tutorial](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad)) is prepared based on a previous version of the project but it still a good resource to start with coding CNNs. [![Building CNN in Python](https://user-images.githubusercontent.com/16560492/82431022-6c3a1200-9a8e-11ea-8f1b-b055196d76e3.png)](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad) ## Tutorial: Derivation of CNN from FCNN Get started with the genetic algorithm by reading the tutorial titled [**Derivation of Convolutional Neural Network from Fully Connected Network Step-By-Step**](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad) which is available at these links: * [LinkedIn](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad) * [Towards Data Science](https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275) * [KDnuggets](https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html) [![Derivation of CNN from FCNN](https://user-images.githubusercontent.com/16560492/82431369-db176b00-9a8e-11ea-99bd-e845192873fc.png)](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad) ## Book: Practical Computer Vision Applications Using Deep Learning with CNNs You can also check my book cited as [**Ahmed Fawzy Gad 'Practical Computer Vision Applications Using Deep Learning with CNNs'. Dec. 2018, Apress, 978-1-4842-4167-7**](https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665) which discusses neural networks, convolutional neural networks, deep learning, genetic algorithm, and more. Find the book at these links: - [Amazon](https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665) - [Springer](https://link.springer.com/book/10.1007/978-1-4842-4167-7) - [Apress](https://www.apress.com/gp/book/9781484241660) - [O'Reilly](https://www.oreilly.com/library/view/practical-computer-vision/9781484241677) - [Google Books](https://books.google.com.eg/books?id=xLd9DwAAQBAJ) ![Fig04](https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg) # Contact Us * E-mail: ahmed.f.gad@gmail.com * [LinkedIn](https://www.linkedin.com/in/ahmedfgad) * [Amazon Author Page](https://amazon.com/author/ahmedgad) * [Heartbeat](https://heartbeat.fritz.ai/@ahmedfgad) * [Paperspace](https://blog.paperspace.com/author/ahmed) * [KDnuggets](https://kdnuggets.com/author/ahmed-gad) * [TowardsDataScience](https://towardsdatascience.com/@ahmedfgad) * [GitHub](https://github.com/ahmedfgad)