# elk **Repository Path**: wanliofficial/elk ## Basic Information - **Project Name**: elk - **Description**: 能够运行在mcu上的超级轻量级JavaScript引擎 - **Primary Language**: C - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-09-07 - **Last Updated**: 2025-10-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: 虚拟机, 脚本引擎, JavaScript, mcu, 微处理器 ## README # Elk: a tiny JS engine for embedded systems [![Build Status](https://github.com/cesanta/elk/workflows/build/badge.svg)](https://github.com/cesanta/elk/actions) [![License: AGPL/Commercial](https://img.shields.io/badge/License-AGPL%20or%20Commercial-green.svg)](https://opensource.org/licenses/gpl-2.0.php) [![Code Coverage](https://codecov.io/gh/cesanta/elk/branch/master/graph/badge.svg)](https://codecov.io/gh/cesanta/elk) Elk is a tiny embeddable JavaScript engine that implements a small but usable subset of ES6. It is designed for microcontroller development. Instead of writing firmware code entirely in C/C++, Elk allows to add JavaScript customisations to the firmware developed in C - which is a great way to let customers to extend/customise device functionality. Elk features include: - Cross platform. Works anywhere from 8-bit microcontrollers to 64-bit servers - Zero dependencies. Builds cleanly by ISO C or ISO C++ compilers - Easy to embed: just copy `elk.c` and `elk.h` to your source tree - Small and simple embedding API - Does not use malloc. Operates with a given memory buffer only - Small footprint: about 20KB on flash/disk, about 100 bytes RAM for core VM - No bytecode. Interprets JS code directly Elk approach is different from other scripting environments like micropython, which provide a complete JS API for everything. Elk is completely bare, it does not even have a standard library. All required functionality is supposed to be imported from C/C++ firmware, and JS code simply orchestrates things. That leaves Elk very minimal and tunable. Below is a blinky demonstration on a classic Arduino Nano board which has 2K RAM and 30K flash (see [full sketch](examples/BlinkyJS/BlinkyJS.ino)): ![Elk on Arduino Nano](test/nano.gif) ## JavaScript on ESP32 The [Esp32JS](examples/Esp32JS) Arduino sketch is an example of Elk integration with ESP32. Flash this sketch on your ESP32 board, go to https://cesanta.com/elk, and get a JavaScript development environment instantly! All components, including ESP32 firmware and Web editor, are open. Here how it looks like: ![](test/editor.png) The example JS firmware implements a classic blinky that uses timers imported from C. ## Call JavaScript from C ```c #include #include "elk.h" int main(void) { char mem[200]; struct js *js = js_create(mem, sizeof(mem)); // Create JS instance jsval_t v = js_eval(js, "1 + 2 * 3", ~0U); // Execute JS code printf("result: %s\n", js_str(js, v)); // result: 7 return 0; } ``` ## Call C from JavaScript This demonstrates how JS code can import and call existing C functions: ```c #include #include "elk.h" // C function that adds two numbers. Will be called from JS jsval_t sum(struct js *js, jsval_t *args, int nargs) { if (nargs != 2) return js_err(js, "2 args expected"); double a = js_getnum(args[0]); // Fetch 1st arg double b = js_getnum(args[1]); // Fetch 2nd arg return js_mknum(a + b); } int main(void) { char mem[200]; struct js *js = js_create(mem, sizeof(mem)); // Create JS instance js_set(js, js_glob(js), "sum", js_mkfun(sum))); // Import sum() jsval_t result = js_eval(js, "sum(3, 4);", ~0U); // Call sum printf("result: %s\n", js_str(js, result)); // result: 7 return 0; } ``` ## Supported features - Operations: all standard JS operations except: - `!=`, `==`. Use strict comparison `!==`, `===` - No computed member access `a[b]` - No exponentiation operation `a ** b` - Typeof: `typeof('a') === 'string'` - For loop: `for (...;...;...) ...` - Conditional: `if (...) ... else ...` - Ternary operator `a ? b : c` - Simple types: `let a, b, c = 12.3, d = 'a', e = null, f = true, g = false;` - Functions: `let f = function(x, y) { return x + y; };` - Objects: `let obj = {f: function(x) { return x * 2}}; obj.f(3);` - Every statement must end with a semicolon `;` - Strings are binary data chunks, not Unicode strings: `'Київ'.length === 8` ## Not supported features - No `var`, no `const`. Use `let` (strict mode only) - No `do`, `switch`, `while`. Use `for` - No `=>` functions. Use `let f = function(...) {...};` - No arrays, closures, prototypes, `this`, `new`, `delete` - No standard library: no `Date`, `Regexp`, `Function`, `String`, `Number` ## Performance Since Elk parses and interprets JS code on the fly, it is not meant to be used in a performance-critical scenarios. For example, below are the numbers for a simple loop code on a different architectures. ```javascript for (let i = 0; i < 100; i++) true; // 97 milliseconds on a 16Mhz 8-bit Atmega328P (Arduino Uno and alike) // 16 milliseconds on a 48Mhz SAMD21 // 5 milliseconds on a 133Mhz Raspberry RP2040 // 2 milliseconds on a 240Mhz ESP32 ``` ## Build options Available preprocessor definitions: | Name | Default | Description | | ------------ | --------- | ----------- | |`JS_EXPR_MAX` | 20 | Maximum tokens in expression. Expression evaluation function declares an on-stack array `jsval_t stk[JS_EXPR_MAX];`. Increase to allow very long expressions. Reduce to save C stack space. | |`JS_DUMP` | undefined | Define to enable `js_dump(struct js *)` function which prints JS memory internals to stdout | Note: on ESP32 or ESP8266, compiled functions go into the `.text` ELF section and subsequently into the IRAM MCU memory. It is possible to save IRAM space by copying Elk code into the irom section before linking. First, compile the object file, then rename `.text` section, e.g. for ESP32: ```sh $ xtensa-esp32-elf-gcc $CFLAGS elk.c -c elk.tmp $ xtensa-esp32-elf-objcopy --rename-section .text=.irom0.text elk.tmp elk.o ``` Note: Elk uses `snprintf()` standard function to format numbers (double). On some architectures, for example AVR Arduino, that standard function does not support float formatting - therefore printing numbers may output nothing or `?` symbols. ## API reference ### js\_create() ```c struct js *js_create(void *buf, size_t len); ``` Initialize JS engine in a given memory block. Elk will only use that memory block to hold its runtime, and never use any extra memory. Return: a non-`NULL` opaque pointer on success, or `NULL` when `len` is too small. The minimum `len` is about 100 bytes. The given memory buffer is laid out in the following way: ``` | <-------------------------------- len ------------------------------> | | struct js, ~100 bytes | runtime vars | free memory | ``` ### js\_eval() ```c jsval_t js_eval(struct js *, const char *buf, size_t len); ``` Evaluate JS code in `buf`, `len` and return result of the evaluation. During the evaluation, Elk stores variables in the "runtime" memory section. When `js_eval()` returns, Elk does not keep any reference to the evaluated code: all strings, functions, etc, are copied to the runtime. Important note: the returned result is valid only before the next call to `js_eval()`. The reason is that `js_eval()` triggers a garbage collection. A garbage collection is mark-and-sweep, run before every top-level statement gets executed. The runtime footprint is as follows: - An empty object is 8 bytes - Each object property is 16 bytes - A string is 4 bytes + string length, aligned to 4 byte boundary - A C stack usage is ~200 bytes per nested expression evaluation ### js\_str() ```c const char *js_str(struct js *, jsval_t val); ``` Stringify JS value `val` and return a pointer to a 0-terminated result. The string is allocated in the "free" memory section. If there is no enough space there, an empty string is returned. The returned pointer is valid until the next `js_eval()` call. ### js\_glob() ```c jsval_t js_glob(struct js *); ``` Return global JS object, i.e. a root namespace. ### js\_mk\*() ```c jsval_t js_mkundef(void); // Create undefined jsval_t js_mknull(void); // Create null, null, true, false jsval_t js_mktrue(void); // Create true jsval_t js_mkfalse(void); // Create false jsval_t js_mkstr(struct js *, const void *, size_t); // Create string jsval_t js_mknum(double); // Create number jsval_t js_mkerr(struct js *js, const char *fmt, ...); // Create error jsval_t js_mkfun(jsval_t (*fn)(struct js *, jsval_t *, int)); // Create func jsval_t js_mkobj(struct js *); // Create object void js_set(struct js *, jsval_t, const char *, jsval_t); // Set obj attr ``` Create JS values from C values ### js\_get\*() ```c enum { JS_UNDEF, JS_NULL, JS_TRUE, JS_FALSE, JS_STR, JS_NUM, JS_ERR, JS_PRIV }; int js_type(jsval_t val); // Return JS value type double js_getnum(jsval_t val); // Get number int js_getbool(jsval_t val); // Get boolean, 0 or 1 char *js_getstr(struct js *js, jsval_t val, size_t *len); // Get string ``` Extract C values from JS values ### js\_chkargs() ```c bool js_chkargs(jsval_t *args, int nargs, const char *spec); ``` A helper function that checks a validity of the arguments passed to a function. A `spec` is a 0-terminated string where each character represents a type of the expected argument: `b` for `bool`, `d` for number, `s` for string, `j` for any other JS value. Usage example - a C function that implements a JS function `greater_than(number1, number2)`: ```c static jsval_t js_gt(struct js *js, jsval_t *args, int nargs) { if (!js_chkargs(args, nargs, "dd")) return js_mkerr(js, "bad args!"); return js_getnum(args[0]) > js_getnum(args[1]) ? js_mktrue() : js_mkfalse(); } ``` ### js\_setmaxcss() ```c void js_setmaxcss(struct js *, size_t max); ``` Set maximum allowed C stack size usage ### js\_stats() ```c void js_stats(struct js *, size_t *total, size_t *min, size_t *cstacksize); ``` Return resource usage statistics: `total` for total usable JS memory, `min` for the lowest free JS memory observed (low watermark), and `cstacksize` for the largest C stack usage observed. ### js\_dump() ```c void js_dump(struct js *); ``` Print debug info about the current JS state to stdout. Requires `-DJS_DUMP` ## LICENSE Dual license: AGPLv3 or commercial. For commercial licensing, technical support and integration help, please contact us at https://cesanta.com/contact.html # See also - [Mongoose Web Server Library](https://mongoose.ws/) - a robust, open-source solution licensed under GPLv2, designed to seamlessly integrate web server functionality into your embedded devices. - With complementary [Mongoose Wizard](https://mongoose.ws/wizard/) - a no-code visual tool that enables rapid WebUI creation without the need for frontend expertise.