# DECIPHER
**Repository Path**: shineboy/DECIPHER
## Basic Information
- **Project Name**: DECIPHER
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-09-01
- **Last Updated**: 2025-09-01
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[](https://github.com/gao-lab/DECIPHER/stargazers)
[](https://pepy.tech/project/cell-decipher)
[](https://github.com/gao-lab/DECIPHER/actions/workflows/build.yml)
[](https://cell-decipher.readthedocs.io/en/latest/)
[](https://opensource.org/licenses/MIT)


# DECIPHER
[Installation](#Installation) • [Documentation](#Documentation) • [Citation](#Citation) • [FAQ](#FAQ) • [Acknowledgement](#Acknowledgement)
`DECIPHER` aims to learn cells’ disentangled intracellular molecular identity embedding and extracellular spatial context embedding from spatial omics data.

## Installation
### PyPI
> [!IMPORTANT]
> Requires Python >= 3.10 and CUDA-enabled GPU (CPU-only device is not recommended).
We recommend to install `cell-decipher` to a new conda environment:
```sh
mamba create -n decipher python==3.11 -c conda-forge -y && conda activate decipher
pip install cell-decipher
install_pyg_dependencies
```
(Optional) You can install [RAPIDS](https://docs.rapids.ai/install) to accelerate visualization.
```sh
mamba create -n decipher -c conda-forge -c rapidsai -c nvidia python=3.11 rapids=25.06 'cuda-version>=12.0,<=12.8' -y && conda activate decipher
pip install cell-decipher
install_pyg_dependencies
```
### Docker
Build docker image from [Dockerfile](./Dockerfile) or pull image from Docker Hub directly:
```sh
docker pull huhansan666666/decipher:latest
docker run --gpus all -it --rm huhansan666666/decipher:latest
```
## Documentation
### Minimal example
Here is a minimal example for quick start:
```python
import scanpy as sc
from decipher import DECIPHER
from decipher.utils import scanpy_viz
# Init model
model = DECIPHER(work_dir='/path/to/work_dir')
# Register data (adata.X is raw counts, adata.obsm['spatial'] is spatial coordinates)
adata = sc.read_h5ad('/path/to/adata.h5ad')
model.register_data(adata)
# Fit DECIPHER model
model.fit_omics()
# Clustering disentangled embeddings
adata.obsm['X_center'] = model.center_emb # intracellular molecular embedding
adata.obsm['X_nbr'] = model.nbr_emb # spatial context embedding
adata = scanpy_viz(adata, ['center', 'nbr'], rapids=False)
# Plot
adata.obsm['X_umap'] = adata.obsm['X_umap_center'].copy()
sc.pl.umap(adata, color=['cell_type'])
adata.obsm['X_umap'] = adata.obsm['X_umap_nbr'].copy()
sc.pl.umap(adata, color=['region'])
```
### Tutorials
> Please check [**documentation**](https://cell-decipher.readthedocs.io/en/latest) for all tutorials.
| Name | Description | Colab |
| --------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| [Basic Model Tutorial](./docs/tutorials/1-train_model.ipynb) | Tutorial on how to use DECIPHER | [](https://colab.research.google.com/drive/14PEtrgqlf-KbLOTfBLc9gbx0YvY6mi0S?usp=sharing) |
| [Multi-slices with Batch Effects](./docs/tutorials/2-remove_batch.ipynb) | Tutorial on how to apply DECIPHER to multiple slices with batch effects | [](https://colab.research.google.com/drive/1eLJeRDZFq2tlDUWpETlSxVUdzRv9CeSD?usp=sharing) |
| [Identify Localization-related LRs](./docs/tutorials/3-select_LRs.ipynb) | Tutorial on how to identify ligand-receptors which related wtih cells’ localization based on DECIPHER embeddings | Insufficient resources |
| [Multi-GPUs Training](./docs/tutorials.md#multi-gpu-training) | Tutorial on how to use DECIPHER with multi-GPUs on spatial atlas | Insufficient resources |
| [More technologies](./docs/tutorials/4-more_techs.ipynb) | Tutorial on how to use DECIPHER with multiple spatial technologies | Insufficient resources |
## Citation
*High-fidelity disentangled cellular embeddings for large-scale heterogeneous spatial omics via DECIPHER* ([biorxiv](https://www.biorxiv.org/content/10.1101/2024.11.29.626126v1) 2024)
> If you want to repeat our benchmarks and case studies, please check the [**benchmark**](./benchmark/) and [**experiments**](./experiments/) folder.
## FAQ
> Please open a new [github issue](https://github.com/gao-lab/DECIPHER/issues/new/choose) if you meet problem.
1. Visium or ST data
DECIPHER is designed for single cell resolution data. As for Visium or ST, you can still use DECIPHER after obtaining single-cell resolution through deconvolution or spatial mapping strategies.
## Acknowledgement
We thank the following great open-source projects for their help or inspiration:
- [vit-pytorch](https://github.com/lucidrains/vit-pytorch)
- [lightly](https://github.com/lightly-ai/lightly)
- [scib](https://github.com/theislab/scib)
- [rapids_singlecell](https://github.com/scverse/rapids_singlecell/)