# NLP-Models-Tensorflow **Repository Path**: misakalee/NLP-Models-Tensorflow ## Basic Information - **Project Name**: NLP-Models-Tensorflow - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-05-03 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

logo

MIT License

--- **NLP-Models-Tensorflow**, Gathers machine learning and tensorflow deep learning models for NLP problems, **code simplify inside Jupyter Notebooks 100%**. ## Table of contents * [Text classification](https://github.com/huseinzol05/NLP-Models-Tensorflow#text-classification) * [Chatbot](https://github.com/huseinzol05/NLP-Models-Tensorflow#chatbot) * [Neural Machine Translation](https://github.com/huseinzol05/NLP-Models-Tensorflow#neural-machine-translation-english-to-vietnam) * [Embedded](https://github.com/huseinzol05/NLP-Models-Tensorflow#embedded) * [Entity-Tagging](https://github.com/huseinzol05/NLP-Models-Tensorflow#entity-tagging) * [POS-Tagging](https://github.com/huseinzol05/NLP-Models-Tensorflow#pos-tagging) * [Dependency-Parser](https://github.com/huseinzol05/NLP-Models-Tensorflow#dependency-parser) * [Question-Answers](https://github.com/huseinzol05/NLP-Models-Tensorflow#question-answers) * [Abstractive Summarization](https://github.com/huseinzol05/NLP-Models-Tensorflow#abstractive-summarization) * [Extractive Summarization](https://github.com/huseinzol05/NLP-Models-Tensorflow#extractive-summarization) * [Stemming](https://github.com/huseinzol05/NLP-Models-Tensorflow#stemming) * [Generator](https://github.com/huseinzol05/NLP-Models-Tensorflow#generator) * [Language detection](https://github.com/huseinzol05/NLP-Models-Tensorflow#language-detection) * [OCR (optical character recognition)](https://github.com/huseinzol05/NLP-Models-Tensorflow#ocr-optical-character-recognition) * [Speech to Text](https://github.com/huseinzol05/NLP-Models-Tensorflow#speech-to-text) * [Text to Speech](https://github.com/huseinzol05/NLP-Models-Tensorflow#text-to-speech) * [Text Similarity](https://github.com/huseinzol05/NLP-Models-Tensorflow#text-similarity) * [Text Augmentation](https://github.com/huseinzol05/NLP-Models-Tensorflow#text-augmentation) * [Miscellaneous](https://github.com/huseinzol05/NLP-Models-Tensorflow#Miscellaneous) * [Attention](https://github.com/huseinzol05/NLP-Models-Tensorflow#attention) ## Objective Original implementations are quite complex and not really beginner friendly. So I tried to simplify most of it. Also, there are tons of not-yet release papers implementation. So feel free to use it for your own research! ## Contents ### [Text classification](text-classification) 1. Basic cell RNN 2. Bidirectional RNN 3. LSTM cell RNN 4. GRU cell RNN 5. LSTM RNN + Conv2D 6. K-max Conv1d 7. LSTM RNN + Conv1D + Highway 8. LSTM RNN with Attention 9. Neural Turing Machine 10. Seq2Seq 11. Bidirectional Transformers 12. Dynamic Memory Network 13. Residual Network using Atrous CNN + Bahdanau Attention 14. Transformer-XL
Complete list (67 notebooks) 1. Basic cell RNN 2. Basic cell RNN + Hinge 3. Basic cell RNN + Huber 4. Basic cell Bidirectional RNN 5. Basic cell Bidirectional RNN + Hinge 6. Basic cell Bidirectional RNN + Huber 7. LSTM cell RNN 8. LSTM cell RNN + Hinge 9. LSTM cell RNN + Huber 10. LSTM cell Bidirectional RNN 11. LSTM cell Bidirectional RNN + Huber 12. LSTM cell RNN + Dropout + L2 13. GRU cell RNN 14. GRU cell RNN + Hinge 15. GRU cell RNN + Huber 16. GRU cell Bidirectional RNN 17. GRU cell Bidirectional RNN + Hinge 18. GRU cell Bidirectional RNN + Huber 19. LSTM RNN + Conv2D 20. K-max Conv1d 21. LSTM RNN + Conv1D + Highway 22. LSTM RNN + Basic Attention 23. LSTM Dilated RNN 24. Layer-Norm LSTM cell RNN 25. Only Attention Neural Network 26. Multihead-Attention Neural Network 27. Neural Turing Machine 28. LSTM Seq2Seq 29. LSTM Seq2Seq + Luong Attention 30. LSTM Seq2Seq + Bahdanau Attention 31. LSTM Seq2Seq + Beam Decoder 32. LSTM Bidirectional Seq2Seq 33. Pointer Net 34. LSTM cell RNN + Bahdanau Attention 35. LSTM cell RNN + Luong Attention 36. LSTM cell RNN + Stack Bahdanau Luong Attention 37. LSTM cell Bidirectional RNN + backward Bahdanau + forward Luong 38. Bytenet 39. Fast-slow LSTM 40. Siamese Network 41. LSTM Seq2Seq + tf.estimator 42. Capsule layers + RNN LSTM 43. Capsule layers + LSTM Seq2Seq 44. Capsule layers + LSTM Bidirectional Seq2Seq 45. Nested LSTM 46. LSTM Seq2Seq + Highway 47. Triplet loss + LSTM 48. DNC (Differentiable Neural Computer) 49. ConvLSTM 50. Temporal Convd Net 51. Batch-all Triplet-loss + LSTM 52. Fast-text 53. Gated Convolution Network 54. Simple Recurrent Unit 55. LSTM Hierarchical Attention Network 56. Bidirectional Transformers 57. Dynamic Memory Network 58. Entity Network 59. End-to-End Memory Network 60. BOW-Chars Deep sparse Network 61. Residual Network using Atrous CNN 62. Residual Network using Atrous CNN + Bahdanau Attention 63. Deep pyramid CNN 64. Transformer-XL 65. GPT-2 66. Quasi-RNN 67. Tacotron
### [Chatbot](chatbot) 1. Seq2Seq-manual 2. Seq2Seq-API Greedy 3. Bidirectional Seq2Seq-manual 4. Bidirectional Seq2Seq-API Greedy 5. Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 6. Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 7. Bytenet 8. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder 9. End-to-End Memory Network 10. Attention is All you need 11. Transformer-XL + LSTM 12. GPT-2 + LSTM 13. Tacotron + Beam decoder
Complete list (53 notebooks) 1. Basic cell Seq2Seq-manual 2. LSTM Seq2Seq-manual 3. GRU Seq2Seq-manual 4. Basic cell Seq2Seq-API Greedy 5. LSTM Seq2Seq-API Greedy 6. GRU Seq2Seq-API Greedy 7. Basic cell Bidirectional Seq2Seq-manual 8. LSTM Bidirectional Seq2Seq-manual 9. GRU Bidirectional Seq2Seq-manual 10. Basic cell Bidirectional Seq2Seq-API Greedy 11. LSTM Bidirectional Seq2Seq-API Greedy 12. GRU Bidirectional Seq2Seq-API Greedy 13. Basic cell Seq2Seq-manual + Luong Attention 14. LSTM Seq2Seq-manual + Luong Attention 15. GRU Seq2Seq-manual + Luong Attention 16. Basic cell Seq2Seq-manual + Bahdanau Attention 17. LSTM Seq2Seq-manual + Bahdanau Attention 18. GRU Seq2Seq-manual + Bahdanau Attention 19. LSTM Bidirectional Seq2Seq-manual + Luong Attention 20. GRU Bidirectional Seq2Seq-manual + Luong Attention 21. LSTM Bidirectional Seq2Seq-manual + Bahdanau Attention 22. GRU Bidirectional Seq2Seq-manual + Bahdanau Attention 23. LSTM Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 24. GRU Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 25. LSTM Seq2Seq-API Greedy + Luong Attention 26. GRU Seq2Seq-API Greedy + Luong Attention 27. LSTM Seq2Seq-API Greedy + Bahdanau Attention 28. GRU Seq2Seq-API Greedy + Bahdanau Attention 29. LSTM Seq2Seq-API Beam Decoder 30. GRU Seq2Seq-API Beam Decoder 31. LSTM Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder 32. GRU Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder 33. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 34. GRU Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 35. Bytenet 36. LSTM Seq2Seq + tf.estimator 37. Capsule layers + LSTM Seq2Seq-API Greedy 38. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder 39. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder + Dropout + L2 40. DNC Seq2Seq 41. LSTM Bidirectional Seq2Seq-API + Luong Monotic Attention + Beam Decoder 42. LSTM Bidirectional Seq2Seq-API + Bahdanau Monotic Attention + Beam Decoder 43. End-to-End Memory Network + Basic cell 44. End-to-End Memory Network + LSTM cell 45. Attention is all you need 46. Transformer-XL 47. Attention is all you need + Beam Search 48. Transformer-XL + LSTM 49. GPT-2 + LSTM 50. Fairseq 51. Conv-Encoder + LSTM 52. Tacotron + Greedy decoder 53. Tacotron + Beam decoder
### [Neural Machine Translation (English to Vietnam)](neural-machine-translation) 1. Seq2Seq-manual 2. Seq2Seq-API Greedy 3. Bidirectional Seq2Seq-manual 4. Bidirectional Seq2Seq-API Greedy 5. Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 6. Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 7. Bytenet 8. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder 9. End-to-End Memory Network 10. Attention is All you need
Complete list (49 notebooks) 1. Basic cell Seq2Seq-manual 2. LSTM Seq2Seq-manual 3. GRU Seq2Seq-manual 4. Basic cell Seq2Seq-API Greedy 5. LSTM Seq2Seq-API Greedy 6. GRU Seq2Seq-API Greedy 7. Basic cell Bidirectional Seq2Seq-manual 8. LSTM Bidirectional Seq2Seq-manual 9. GRU Bidirectional Seq2Seq-manual 10. Basic cell Bidirectional Seq2Seq-API Greedy 11. LSTM Bidirectional Seq2Seq-API Greedy 12. GRU Bidirectional Seq2Seq-API Greedy 13. Basic cell Seq2Seq-manual + Luong Attention 14. LSTM Seq2Seq-manual + Luong Attention 15. GRU Seq2Seq-manual + Luong Attention 16. Basic cell Seq2Seq-manual + Bahdanau Attention 17. LSTM Seq2Seq-manual + Bahdanau Attention 18. GRU Seq2Seq-manual + Bahdanau Attention 19. LSTM Bidirectional Seq2Seq-manual + Luong Attention 20. GRU Bidirectional Seq2Seq-manual + Luong Attention 21. LSTM Bidirectional Seq2Seq-manual + Bahdanau Attention 22. GRU Bidirectional Seq2Seq-manual + Bahdanau Attention 23. LSTM Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 24. GRU Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong 25. LSTM Seq2Seq-API Greedy + Luong Attention 26. GRU Seq2Seq-API Greedy + Luong Attention 27. LSTM Seq2Seq-API Greedy + Bahdanau Attention 28. GRU Seq2Seq-API Greedy + Bahdanau Attention 29. LSTM Seq2Seq-API Beam Decoder 30. GRU Seq2Seq-API Beam Decoder 31. LSTM Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder 32. GRU Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder 33. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 34. GRU Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder 35. Bytenet 36. LSTM Seq2Seq + tf.estimator 37. Capsule layers + LSTM Seq2Seq-API Greedy 38. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder 39. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder + Dropout + L2 40. DNC Seq2Seq 41. LSTM Bidirectional Seq2Seq-API + Luong Monotic Attention + Beam Decoder 42. LSTM Bidirectional Seq2Seq-API + Bahdanau Monotic Attention + Beam Decoder 43. End-to-End Memory Network + Basic cell 44. End-to-End Memory Network + LSTM cell 45. Attention is all you need 46. Transformer-XL 47. Attention is all you need + Beam Search 48. Fairseq 49. Conv-Encoder + LSTM 50. Bytenet Greedy 51. Residual GRU Bidirectional Seq2Seq-API Greedy
### [Embedded](embedded) 1. Word Vector using CBOW sample softmax 2. Word Vector using CBOW noise contrastive estimation 3. Word Vector using skipgram sample softmax 4. Word Vector using skipgram noise contrastive estimation 5. Lda2Vec Tensorflow 6. Supervised Embedded 7. Triplet-loss + LSTM 8. LSTM Auto-Encoder 9. Batch-All Triplet-loss LSTM 10. Fast-text 11. ELMO (biLM) ### [POS-Tagging](pos-tagging) 1. Bidirectional RNN + Bahdanau Attention + CRF 2. Bidirectional RNN + Luong Attention + CRF 3. Bidirectional RNN + CRF ### [Entity-Tagging](entity-tagging) 1. Bidirectional RNN + Bahdanau Attention + CRF 2. Bidirectional RNN + Luong Attention + CRF 3. Bidirectional RNN + CRF 4. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF 5. Char Ngrams + Residual Network + Bahdanau Attention + CRF 6. Char Ngrams + Attention is you all Need + CRF ### [Dependency-Parser](dependency-parser) 1. Bidirectional RNN + Bahdanau Attention + CRF 2. Bidirectional RNN + Luong Attention + CRF 3. Residual Network + Bahdanau Attention + CRF 4. Residual Network + Bahdanau Attention + Char Embedded + CRF 5. Attention is all you need + CRF ### [Question-Answers](question-answer) 1. End-to-End Memory Network + Basic cell 2. End-to-End Memory Network + GRU cell 3. End-to-End Memory Network + LSTM cell 4. Dynamic Memory ### [Stemming](stemming) 1. LSTM + Seq2Seq + Beam 2. GRU + Seq2Seq + Beam 3. LSTM + BiRNN + Seq2Seq + Beam 4. GRU + BiRNN + Seq2Seq + Beam 5. DNC + Seq2Seq + Greedy ### [Abstractive Summarization](abstractive-summarization) 1. LSTM Seq2Seq using topic modelling 2. LSTM Seq2Seq + Luong Attention using topic modelling 3. LSTM Seq2Seq + Beam Decoder using topic modelling 4. LSTM Bidirectional + Luong Attention + Beam Decoder using topic modelling 5. LSTM Seq2Seq + Luong Attention + Pointer Generator 6. Bytenet 7. Pointer-Generator + Bahdanau 8. Copynet ### [Extractive Summarization](extractive-summarization) 1. Skip-thought Vector 2. Residual Network using Atrous CNN 3. Residual Network using Atrous CNN + Bahdanau Attention ### [OCR (optical character recognition)](ocr) 1. CNN + LSTM RNN ### [Speech to Text](speech-to-text) 1. Tacotron 2. Bidirectional RNN + Greedy CTC 3. Bidirectional RNN + Beam CTC 4. Seq2Seq + Bahdanau Attention + Beam CTC 5. Seq2Seq + Luong Attention + Beam CTC 6. Bidirectional RNN + Attention + Beam CTC 7. Wavenet 8. CNN encoder + RNN decoder + Bahdanau Attention 9. CNN encoder + RNN decoder + Luong Attention 10. Dilation CNN + GRU Bidirectional 11. Deep speech 2 ### [Text to Speech](text-to-speech) 1. Tacotron 2. Wavenet 3. Seq2Seq + Luong Attention 4. Seq2Seq + Bahdanau Attention ### [Generator](generator) 1. Character-wise RNN + LSTM 2. Character-wise RNN + Beam search 3. Character-wise RNN + LSTM + Embedding 4. Word-wise RNN + LSTM 5. Word-wise RNN + LSTM + Embedding 6. Character-wise + Seq2Seq + GRU 7. Word-wise + Seq2Seq + GRU 8. Character-wise RNN + LSTM + Bahdanau Attention 9. Character-wise RNN + LSTM + Luong Attention 10. Word-wise + Seq2Seq + GRU + Beam 11. Character-wise + Seq2Seq + GRU + Bahdanau Attention 12. Word-wise + Seq2Seq + GRU + Bahdanau Attention ### [Language-detection](language-detection) 1. Fast-text Char N-Grams ### [Text Similarity](text-similarity) 1. Character wise similarity + LSTM + Bidirectional 2. Word wise similarity + LSTM + Bidirectional 3. Character wise similarity Triplet loss + LSTM 4. Word wise similarity Triplet loss + LSTM ### [Text Augmentation](text-augmentation) 1. Pretrained Glove 2. VAE-seq2seq-beam ### [Attention](attention) 1. Bahdanau 2. Luong 3. Hierarchical 4. Additive 5. Soft 6. Attention-over-Attention 7. Bahdanau API 8. Luong API ### [Miscellaneous](misc) 1. Attention heatmap on Bahdanau Attention 2. Attention heatmap on Luong Attention ### [Not-deep-learning](not-deep-learning) 1. Markov chatbot 2. Decomposition summarization (3 notebooks)