# cuDF **Repository Path**: mirrors/cuDF ## Basic Information - **Project Name**: cuDF - **Description**: cuDF 基于Apache Arrow柱状内存格式构建,是一个GPU DataFrame库,用于加载,连接,聚合,过滤和操作数据 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/cudf - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 2 - **Created**: 2019-08-06 - **Last Updated**: 2025-12-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README #
 cuDF - A GPU-accelerated DataFrame library for tabular data processing
cuDF (pronounced "KOO-dee-eff") is an [Apache 2.0 licensed](LICENSE), GPU-accelerated DataFrame library for tabular data processing. The cuDF library is one part of the [RAPIDS](https://rapids.ai/) GPU Accelerated Data Science suite of libraries. ## About cuDF is composed of multiple libraries including: * [libcudf](https://docs.rapids.ai/api/cudf/stable/libcudf_docs/): A CUDA C++ library with [Apache Arrow](https://arrow.apache.org/) compliant data structures and fundamental algorithms for tabular data. * [pylibcudf](https://docs.rapids.ai/api/cudf/stable/pylibcudf/): A Python library providing [Cython](https://cython.org/) bindings for libcudf. * [cudf](https://docs.rapids.ai/api/cudf/stable/user_guide/): A Python library providing - A DataFrame library mirroring the [pandas](https://pandas.pydata.org/) API - A zero-code change accelerator, [cudf.pandas](https://docs.rapids.ai/api/cudf/stable/cudf_pandas/), for existing pandas code. * [cudf-polars](https://docs.rapids.ai/api/cudf/stable/cudf_polars/): A Python library providing a GPU engine for [Polars](https://pola.rs/) * [dask-cudf](https://docs.rapids.ai/api/dask-cudf/stable/): A Python library providing a GPU backend for [Dask](https://www.dask.org/) DataFrames Notable projects that use cuDF include: * [Spark RAPIDS](https://github.com/NVIDIA/spark-rapids): A GPU accelerator plugin for [Apache Spark](https://spark.apache.org/) * [Velox-cuDF](https://github.com/facebookincubator/velox/blob/main/velox/experimental/cudf/README.md): A [Velox](https://velox-lib.io/) extension module to execute Velox plans on the GPU * [Sirius](https://www.sirius-db.com/): A GPU-native SQL engine providing extensions for libraries like [DuckDB](https://duckdb.org/) ## Installation ### System Requirements Operating System, GPU driver, and supported CUDA version information can be found at the [RAPIDS Installation Guide](https://docs.rapids.ai/install/#system-req) ### pip A stable release of each cudf library is available on PyPI. You will need to match the major version number of your installed CUDA version with a `-cu##` suffix when installing from PyPI. A development version of each library is available as a nightly release by including the `-i https://pypi.anaconda.org/rapidsai-wheels-nightly/simple` index. ```bash # CUDA 13 pip install libcudf-cu13 pip install pylibcudf-cu13 pip install cudf-cu13 pip install cudf-polars-cu13 pip install dask-cudf-cu13 # CUDA 12 pip install libcudf-cu12 pip install pylibcudf-cu12 pip install cudf-cu12 pip install cudf-polars-cu12 pip install dask-cudf-cu12 ``` ### conda A stable release of each cudf library is available to be installed with the conda package manager by specifying the `-c rapidsai` channel. A development version of each library is available as a nightly release by specifying the `-c rapidsai-nightly` channel instead. ```bash conda install -c rapidsai libcudf conda install -c rapidsai pylibcudf conda install -c rapidsai cudf conda install -c rapidsai cudf-polars conda install -c rapidsai dask-cudf ``` ### source To install cuDF from source, please follow [the contribution guide](CONTRIBUTING.md#setting-up-your-build-environment) detailing how to setup the build environment. ## Examples The following examples showcase reading a parquet file, dropping missing rows with a null value, and performing a groupby aggregation on the data. ### cudf `import cudf` and the APIs are largely similar to pandas. ```python import cudf df = cudf.read_parquet("data.parquet") df.dropna().groupby(["A", "B"]).mean() ``` ### cudf.pandas With a Python file containing pandas code: ```python import pandas as pd df = cudf.read_parquet("data.parquet") df.dropna().groupby(["A", "B"]).mean() ``` Use cudf.pandas by invoking `python` with `-m cudf.pandas` ```bash $ python -m cudf.pandas script.py ``` If running the pandas code in an interactive Jupyter environment, call `%load_ext cudf.pandas` before importing pandas. ```python In [1]: %load_ext cudf.pandas In [2]: import pandas as pd In [3]: df = cudf.read_parquet("data.parquet") In [4]: df.dropna().groupby(["A", "B"]).mean() ``` ### cudf-polars Using Polars' [lazy API](https://docs.pola.rs/user-guide/lazy/), call `collect` with `engine="gpu"` to run the operation on the GPU ```python import polars as pl lf = pl.scan_parquet("data.parquet") lf.drop_nulls().group_by(["A", "B"]).mean().collect(engine="gpu") ``` ## Questions and Discussion For bug reports or feature requests, please [file an issue](https://github.com/rapidsai/cudf/issues/new/choose) on the GitHub issue tracker. For questions or discussion about cuDF and GPU data processing, feel free to post in the [RAPIDS Slack](https://rapids.ai/slack-invite) workspace. ## Contributing cuDF is open to contributions from the community! Please see our [guide for contributing to cuDF](CONTRIBUTING.md) for more information.