# Synapticjs **Repository Path**: mirrors/Synapticjs ## Basic Information - **Project Name**: Synapticjs - **Description**: Synaptic.js 是一个用于 node.js 和浏览器的 JavaScript 神经网络库,可以构建和训练基本上任何类型的一阶甚至二阶神经网络 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 20 - **Forks**: 6 - **Created**: 2017-09-01 - **Last Updated**: 2025-12-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Synaptic [![Build Status](https://travis-ci.org/cazala/synaptic.svg?branch=master)](https://travis-ci.org/cazala/synaptic) [![Join the chat at https://synapticjs.slack.com](https://synaptic-slack.now.sh/badge.svg)](https://synaptic-slack.now.sh/) ======== ## Important: [Synaptic 2.x](https://github.com/cazala/synaptic/issues/140) is in stage of discussion now! Feel free to participate Synaptic is a javascript neural network library for **node.js** and the **browser**, its generalized algorithm is architecture-free, so you can build and train basically any type of first order or even [second order neural network](http://en.wikipedia.org/wiki/Recurrent_neural_network#Second_Order_Recurrent_Neural_Network) architectures. This library includes a few built-in architectures like [multilayer perceptrons](http://en.wikipedia.org/wiki/Multilayer_perceptron), [multilayer long-short term memory](http://en.wikipedia.org/wiki/Long_short_term_memory) networks (LSTM), [liquid state machines](http://en.wikipedia.org/wiki/Liquid_state_machine) or [Hopfield](http://en.wikipedia.org/wiki/Hopfield_network) networks, and a trainer capable of training any given network, which includes built-in training tasks/tests like solving an XOR, completing a Distracted Sequence Recall task or an [Embedded Reber Grammar](http://www.willamette.edu/~gorr/classes/cs449/reber.html) test, so you can easily test and compare the performance of different architectures. The algorithm implemented by this library has been taken from Derek D. Monner's paper: [A generalized LSTM-like training algorithm for second-order recurrent neural networks](http://www.overcomplete.net/papers/nn2012.pdf) There are references to the equations in that paper commented through the source code. #### Introduction If you have no prior knowledge about Neural Networks, you should start by [reading this guide](https://github.com/cazala/synaptic/wiki/Neural-Networks-101). If you want a practical example on how to feed data to a neural network, then take a look at [this article](https://github.com/cazala/synaptic/wiki/Normalization-101). You may also want to take a look at [this article](http://blog.webkid.io/neural-networks-in-javascript/). #### Demos - [Solve an XOR](http://caza.la/synaptic/#/xor) - [Discrete Sequence Recall Task](http://caza.la/synaptic/#/dsr) - [Learn Image Filters](http://caza.la/synaptic/#/image-filters) - [Paint an Image](http://caza.la/synaptic/#/paint-an-image) - [Self Organizing Map](http://caza.la/synaptic/#/self-organizing-map) - [Read from Wikipedia](http://caza.la/synaptic/#/wikipedia) - [Creating a Simple Neural Network (Video)](https://scrimba.com/casts/cast-1980) - [Learn how to shoot](https://sta-ger.bitbucket.io/apps/bot/index.html) - [Beer glass classifier](https://sta-ger.bitbucket.io/apps/beer/index.html) The source code of these demos can be found in [this branch](https://github.com/cazala/synaptic/tree/gh-pages/scripts). #### Getting started - [Neurons](https://github.com/cazala/synaptic/wiki/Neurons/) - [Layers](https://github.com/cazala/synaptic/wiki/Layers/) - [Networks](https://github.com/cazala/synaptic/wiki/Networks/) - [Trainer](https://github.com/cazala/synaptic/wiki/Trainer/) - [Architect](https://github.com/cazala/synaptic/wiki/Architect/) To try out the examples, checkout the [gh-pages](https://github.com/cazala/synaptic/tree/gh-pages) branch. `git checkout gh-pages` #### Other languages This README is also available in other languages. - [Chinese Simplified | 中文文档](https://github.com/cazala/synaptic/blob/master/README_Zh-CN.md), thanks to [@noraincode](https://github.com/noraincode). - [Chinese Traditional | 繁體中文](https://github.com/cazala/synaptic/blob/master/README_Zh-TW.md), by [@NoobTW](https://github.com/noobtw). - [Japanese | 日本語](https://github.com/cazala/synaptic/blob/master/README_Ja-JP.md), thanks to [@oshirogo](https://github.com/dscripps). ## Overview ### Installation ##### In node You can install synaptic with [npm](http://npmjs.org): ```cmd npm install synaptic --save ``` ##### In the browser You can install synaptic with [bower](http://bower.io): ```cmd bower install synaptic ``` Or you can simply use the CDN link, kindly provided by [CDNjs](https://cdnjs.com/) ```html ``` ### Usage ```javascript var synaptic = require('synaptic'); // this line is not needed in the browser var Neuron = synaptic.Neuron, Layer = synaptic.Layer, Network = synaptic.Network, Trainer = synaptic.Trainer, Architect = synaptic.Architect; ``` Now you can start to create networks, train them, or use built-in networks from the [Architect](https://github.com/cazala/synaptic/wiki/Architect/). ### Examples ##### Perceptron This is how you can create a simple **perceptron**: ![perceptron](http://www.codeproject.com/KB/dotnet/predictor/network.jpg). ```javascript function Perceptron(input, hidden, output) { // create the layers var inputLayer = new Layer(input); var hiddenLayer = new Layer(hidden); var outputLayer = new Layer(output); // connect the layers inputLayer.project(hiddenLayer); hiddenLayer.project(outputLayer); // set the layers this.set({ input: inputLayer, hidden: [hiddenLayer], output: outputLayer }); } // extend the prototype chain Perceptron.prototype = new Network(); Perceptron.prototype.constructor = Perceptron; ``` Now you can test your new network by creating a trainer and teaching the perceptron to learn an XOR ```javascript var myPerceptron = new Perceptron(2,3,1); var myTrainer = new Trainer(myPerceptron); myTrainer.XOR(); // { error: 0.004998819355993572, iterations: 21871, time: 356 } myPerceptron.activate([0,0]); // 0.0268581547421616 myPerceptron.activate([1,0]); // 0.9829673642853368 myPerceptron.activate([0,1]); // 0.9831714267395621 myPerceptron.activate([1,1]); // 0.02128894618097928 ``` ##### Long Short-Term Memory This is how you can create a simple **long short-term memory** network with input gate, forget gate, output gate, and peephole connections: ![long short-term memory](http://people.idsia.ch/~juergen/lstmcell4.jpg) ```javascript function LSTM(input, blocks, output) { // create the layers var inputLayer = new Layer(input); var inputGate = new Layer(blocks); var forgetGate = new Layer(blocks); var memoryCell = new Layer(blocks); var outputGate = new Layer(blocks); var outputLayer = new Layer(output); // connections from input layer var input = inputLayer.project(memoryCell); inputLayer.project(inputGate); inputLayer.project(forgetGate); inputLayer.project(outputGate); // connections from memory cell var output = memoryCell.project(outputLayer); // self-connection var self = memoryCell.project(memoryCell); // peepholes memoryCell.project(inputGate); memoryCell.project(forgetGate); memoryCell.project(outputGate); // gates inputGate.gate(input, Layer.gateType.INPUT); forgetGate.gate(self, Layer.gateType.ONE_TO_ONE); outputGate.gate(output, Layer.gateType.OUTPUT); // input to output direct connection inputLayer.project(outputLayer); // set the layers of the neural network this.set({ input: inputLayer, hidden: [inputGate, forgetGate, memoryCell, outputGate], output: outputLayer }); } // extend the prototype chain LSTM.prototype = new Network(); LSTM.prototype.constructor = LSTM; ``` These are examples for explanatory purposes, the [Architect](https://github.com/cazala/synaptic/wiki/Architect/) already includes Multilayer Perceptrons and Multilayer LSTM network architectures. ## Contribute **Synaptic** is an Open Source project that started in Buenos Aires, Argentina. Anybody in the world is welcome to contribute to the development of the project. If you want to contribute feel free to send PR's, just make sure to run **npm run test** and **npm run build** before submitting it. This way you'll run all the test specs and build the web distribution files. ## Support If you like this project and you want to show your support, you can buy me a beer with [magic internet money](https://i.imgur.com/mScSiOo.jpg): ``` BTC: 16ePagGBbHfm2d6esjMXcUBTNgqpnLWNeK ETH: 0xa423bfe9db2dc125dd3b56f215e09658491cc556 LTC: LeeemeZj6YL6pkTTtEGHFD6idDxHBF2HXa XMR: 46WNbmwXpYxiBpkbHjAgjC65cyzAxtaaBQjcGpAZquhBKw2r8NtPQniEgMJcwFMCZzSBrEJtmPsTR54MoGBDbjTi2W1XmgM ``` <3