# centerposev2
**Repository Path**: macqueen/centerposev2
## Basic Information
- **Project Name**: centerposev2
- **Description**: centerpose
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2021-02-02
- **Last Updated**: 2021-07-30
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# The repo is based on [CenterNet](https://arxiv.org/abs/1904.07850), which aimed for push the boundary of human pose estimation
multi person pose estimation using center point detection:

## Main results
### Keypoint detection on COCO validation 2017

| Backbone | AP | FPS | TensorRT Speed | GFLOPs |Download |
|--------------|-----------|--------------|----------|----------|----------|
|DLA-34 | 62.7 | 23 | - | - |[model](https://drive.google.com/open?id=1IahJ3vpjTVu1p-Okf6lcn-bM7fVKNg6N) |
|Resnet-50 | 54.5 | 28 | 33 | - |[model](https://drive.google.com/open?id=1oBgWrfigo2fGtpQJXQ0stADTgVFxPWGq) |
|MobilenetV3 | 46.0 | 30 | - | - |[model](https://drive.google.com/open?id=1snJnADAD1NUzyO1QXCftuZu1rsr8095G) |
|ShuffleNetV2 | 43.9 | 25 | - | - |[model](https://drive.google.com/open?id=1FK7YQzCB6mLcb0v4SOmlqtRJfA-PQSvN) |
|[HRNet_W32](https://drive.google.com/open?id=1mJoK7KEx35Wgf6uAZ-Ez5IwAeOk1RYw0)| 63.8 | 16 | - | - |[model](https://drive.google.com/open?id=1X0yxGeeNsD4VwU2caDo-BaH_MoCAnU_J) |
|[HardNet](https://github.com/PingoLH/FCHarDNet)| 46.0 | 30 | - | - |[model](https://drive.google.com/open?id=1CFc_qAAT4NFfrAG8JOxRVG8CAw9ySuYp) |
|[Darknet53]()| 34.2 | 30 | - | - |[model](https://drive.google.com/open?id=1S8spP_QKHqIYmWpfF9Bb4-4OoUXIOnkh) |
|[EfficientDet]()| 38.2 | 30 | - | - |[model](https://drive.google.com/open?id=1S8spP_QKHqIYmWpfF9Bb4-4OoUXIOnkh) |
## Installation
git submodule init&git submodule update
Please refer to [INSTALL.md](readme/INSTALL.md) for installation instructions.
## Use CenterNet
We support demo for image/ image folder, video, and webcam.
First, download the model [DLA-34](https://drive.google.com/open?id=1OkHjjViB0dzbuicdtIam-YcoT0sYpmjP)
from the [Model zoo](https://drive.google.com/open?id=1UG2l8XtjOfBtG_GLpSdxlWS2wxFR8hQF) and put them in anywhere.
Run:
~~~
cd tools; python demo.py --cfg ../experiments/dla_34_512x512.yaml --TESTMODEL /your/model/path/dla34_best.pth --DEMOFILE ../images/33823288584_1d21cf0a26_k.jpg --DEBUG 1
~~~
The result for the example images should look like:

## Evaluation
~~~
cd tools; python evaluate.py --cfg ../experiments/dla_34_512x512.yaml --TESTMODEL /your/model/path/dla34_best.pth --DEMOFILE --DEBUG 0
~~~
## Training
After [installation](readme/INSTALL.md), follow the instructions in [DATA.md](readme/DATA.md) to setup the datasets.
We provide config files for all the experiments in the [experiments](experiments) folder.
```
cd ./tools python -m torch.distributed.launch --nproc_per_node 4 train.py --cfg ../experiments/*yalm
```
## Demo
the demo files located in the `demo` directory, which is would be a very robust human detection+tracking+face reid system.
## License
MIT License (refer to the LICENSE file for details).
## Citation
If you find this project useful for your research, please use the following BibTeX entry.
@inproceedings{zhou2019objects,
title={Objects as Points},
author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
booktitle={arXiv preprint arXiv:1904.07850},
year={2019}
}