# centerpose **Repository Path**: macqueen/centerpose ## Basic Information - **Project Name**: centerpose - **Description**: CenterPose_ori - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-06-19 - **Last Updated**: 2021-03-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # The repo is based on [CenterNet](https://arxiv.org/abs/1904.07850), which aimed for push the boundary of human pose estimation multi person pose estimation using center point detection: ![](readme/fig2.png) ## Main results ### Keypoint detection on COCO validation 2017

| Backbone | AP | FPS | TensorRT Speed | GFLOPs |Download | |--------------|-----------|--------------|----------|----------|----------| |DLA-34 | 62.7 | 23 | - | - |[model](https://drive.google.com/open?id=1IahJ3vpjTVu1p-Okf6lcn-bM7fVKNg6N) | |Resnet-50 | 54.5 | 28 | 33 | - |[model](https://drive.google.com/open?id=1oBgWrfigo2fGtpQJXQ0stADTgVFxPWGq) | |MobilenetV3 | 46.0 | 30 | - | - |[model](https://drive.google.com/open?id=1snJnADAD1NUzyO1QXCftuZu1rsr8095G) | |ShuffleNetV2 | 43.9 | 25 | - | - |[model](https://drive.google.com/open?id=1FK7YQzCB6mLcb0v4SOmlqtRJfA-PQSvN) | |[HRNet_W32](https://drive.google.com/open?id=1mJoK7KEx35Wgf6uAZ-Ez5IwAeOk1RYw0)| 63.8 | 16 | - | - |[model](https://drive.google.com/open?id=1X0yxGeeNsD4VwU2caDo-BaH_MoCAnU_J) | |[HardNet](https://github.com/PingoLH/FCHarDNet)| 46.0 | 30 | - | - |[model](https://drive.google.com/open?id=1CFc_qAAT4NFfrAG8JOxRVG8CAw9ySuYp) | |[Darknet53]()| 34.2 | 30 | - | - |[model](https://drive.google.com/open?id=1S8spP_QKHqIYmWpfF9Bb4-4OoUXIOnkh) | |[EfficientDet]()| 38.2 | 30 | - | - |[model](https://drive.google.com/open?id=1S8spP_QKHqIYmWpfF9Bb4-4OoUXIOnkh) | ## Installation git submodule init&git submodule update Please refer to [INSTALL.md](readme/INSTALL.md) for installation instructions. ## Use CenterNet We support demo for image/ image folder, video, and webcam. First, download the model [DLA-34](https://drive.google.com/open?id=1OkHjjViB0dzbuicdtIam-YcoT0sYpmjP) from the [Model zoo](https://drive.google.com/open?id=1UG2l8XtjOfBtG_GLpSdxlWS2wxFR8hQF) and put them in anywhere. Run: ~~~ cd tools; python demo.py --cfg ../experiments/dla_34_512x512.yaml --TESTMODEL /your/model/path/dla34_best.pth --DEMOFILE ../images/33823288584_1d21cf0a26_k.jpg --DEBUG 1 ~~~ The result for the example images should look like:

## Evaluation ~~~ cd tools; python evaluate.py --cfg ../experiments/dla_34_512x512.yaml --TESTMODEL /your/model/path/dla34_best.pth --DEMOFILE --DEBUG 0 ~~~ ## Training After [installation](readme/INSTALL.md), follow the instructions in [DATA.md](readme/DATA.md) to setup the datasets. We provide config files for all the experiments in the [experiments](experiments) folder. ``` cd ./tools python -m torch.distributed.launch --nproc_per_node 4 train.py --cfg ../experiments/*yalm ``` ## Demo the demo files located in the `demo` directory, which is would be a very robust human detection+tracking+face reid system.

## License MIT License (refer to the LICENSE file for details). ## Citation If you find this project useful for your research, please use the following BibTeX entry. @inproceedings{zhou2019objects, title={Objects as Points}, author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp}, booktitle={arXiv preprint arXiv:1904.07850}, year={2019} }