# spring_ai_alibaba_project **Repository Path**: li9699/spring_ai_alibaba_project ## Basic Information - **Project Name**: spring_ai_alibaba_project - **Description**: SAA项目实战 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 2 - **Created**: 2025-10-09 - **Last Updated**: 2025-10-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: Spring, AI, 阿里云百炼平台 ## README # Spring AI Alibaba Project Examples This is a collection of example projects using Spring AI and the Alibaba DashScope API, demonstrating how to integrate large language models into Spring Boot applications. ## Project Overview This project contains multiple modules demonstrating the following capabilities: - Basic Hello World example - Using Ollama local models - Using ChatModel and ChatClient - Streaming output handling - Prompt Engineering - Using prompt templates - Generating structured output - Chat persistence - Text-to-image generation - Text-to-speech conversion - Text embedding vector generation - AI operations application based on Retrieval-Augmented Generation (RAG) - Tool calling capabilities - MCP protocol server and client implementation - Bailing Platform RAG application - Intelligent ordering assistant ## Quick Start ### Prerequisites - Java 17 or higher - Spring Boot 3.x - Maven build tool - DashScope API key ### Installation and Configuration 1. Clone the project repository 2. Configure the DashScope API key in `application.yml` 3. Build the project using Maven 4. Run the required modules ### Running Examples Each module is an independent Spring Boot application that can be run individually. For example, to run the basic Hello World example: ```bash cd SAA-01HelloWorld mvn spring-boot:run ``` ## Usage Instructions Access different endpoints to experience various features: - `/hello/chat` - Basic chat functionality - `/hello/stream` - Streaming chat output - `/ollama/chat` - Using Ollama local models - `/chatclient/dochat` - ChatClient usage example - `/stream/chatflux*` - Streaming output demonstration - `/prompt/chat*` - Prompt engineering example - `/prompttemplate/chat*` - Prompt template usage - `/structuredoutput/chat` - Structured output generation - `/chatmemory/chat` - Chat persistence - `/t2i/image` - Text-to-image generation - `/t2v/voice` - Text-to-speech conversion - `/text2embed` - Text embedding vector generation - `/ragaiops` - RAG AI operations application - `/toolcall/chat*` - Tool calling capabilities - `/mcpclient/chat*` - MCP protocol client - `/bailian/rag/chat` - Bailing Platform RAG application - `/eatAgent` - Intelligent ordering assistant ## Contribution Guidelines Code contributions and improvements are welcome. Please follow these steps: 1. Fork the project 2. Create a new branch 3. Submit your changes 4. Create a Pull Request ## License This project uses the Apache 2.0 license. For details, please refer to the LICENSE file.