# GRAND-plus **Repository Path**: jdlc105/GRAND-plus ## Basic Information - **Project Name**: GRAND-plus - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-19 - **Last Updated**: 2024-08-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GRAND+ This is a PyTorch implementation of GRAND+ for scalable graph-based semi-supervised learning: [GRAND+: Scalable Graph Random Neural Networks](http://keg.cs.tsinghua.edu.cn/jietang/publications/WWW22-Feng-et-al-GRAND-plus.pdf) You may be also interested in the predecessor of this work: [Graph Random Neural Network for Semi-Supervised Learning on Graphs](http://keg.cs.tsinghua.edu.cn/jietang/publications/NIPS20-Feng-et-al-GRAND.pdf) [[github repo](https://github.com/THUDM/GRAND)]. ## Datasets This repo contains `Cora`, `Citeseer` and `Pubmed` datasets under the path `dataset/citation/`. The other datasets used in the paper (including `AMiner-CS`, `Reddit`, `Amazon2M` and `MAG-Scholar-C`) can be downloaded from [Google Drive](https://drive.google.com/drive/folders/1LV8kMRnQENQnwi6qtbycTgVAEGX8rxQv?usp=sharing) or [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/d/d8194be5640242759671/). To run model on these datasets, you should download the corresponding zip file, uncompress it and put it under `dataset/`. You can directly download the zip file of each dataset with the following scripts: - Download datasets from Google Drive ``` pip install gdown gdown --id 1G9Wn1OaqMYpkNmbOESYUFrDgzo0Be0-L -O dataset/aminer.zip gdown --id 1KauMd-AJXyD6KQQnf4vySjRZEOgWQYvx -O dataset/reddit.zip gdown --id 1uItY1AGywFv4nSSFpqBaTEUoDn3w414B -O dataset/Amazon2M.zip gdown --id 1VKHFQfRXkkVShE6d4hA9dImXZalz49qa -O dataset/mag_scholar_c.npz ``` - Download datasets from Tsinghua Cloud ``` python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/629a605e453b40fc9a93/?dl=1 --path dataset --fname aminer.zip python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/384be92876ed4127aa3c/?dl=1 --path dataset --fname reddit.zip python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/7c867cef16214fe1a30b/?dl=1 --path dataset --fname Amazon2M.zip python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/5e5c9d8833a143d5abb4/?dl=1 --path dataset --fname mag_scholar_c.npz ``` ## Requirements - g++ 7.5.0 - [pybind11](https://pybind11.readthedocs.io/en/stable/installing.html) - networkx 2.5 - numpy 1.19.2 - scikit_learn 1.0.2 - scipy 1.5.2 - torch 1.8.1 (cuda 10.2) - [torch_scatter 2.0.6](https://github.com/rusty1s/pytorch_scatter) ## Compilation `make clean && make` ## Running the code `sh scripts/run_.sh ` ### Example: - Running model on Pubmed for 10 runs with personalized pagerank matrix: `sh scripts/run_pubmed.sh 10 ppr` ## Cite If you find this work is helpful to your research, please consider citing our paper: ``` @inproceedings{feng2022grand+, title={GRAND+: Scalable Graph Random Neural Networks}, author={Feng, Wenzheng and Dong, Yuxiao and Huang, Tinglin and Yin, Ziqi and Cheng, Xu and Kharlamov, Evgeny and Tang, Jie}, booktitle={Proceedings of the ACM Web Conference 2022 (WWW’22)}, year={2022} } ```