# Machine-Learning-is-Fun **Repository Path**: alphakappa/Machine-Learning-is-Fun ## Basic Information - **Project Name**: Machine-Learning-is-Fun - **Description**: 我学习机器学习的一些资料和笔记,分主题进行了整理。 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-11 - **Last Updated**: 2021-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 李威的机器学习读书笔记目录 说明:文章链接里图片、公式没有正确显示的话,可以在简书里查看完整的图片和公式。 ## 李航《统计学习方法》(第 2 版)读书笔记 | 文章链接 | 简书 | | ------------------------------------------------------------ | -------------------------------------- | | [《统计学习方法》第 2 章“感知机”学习笔记](https://www.liwei.party/2019/02/17/machine-learning/perceptron/) | https://www.jianshu.com/p/db7f5e841a56 | | [《统计学习方法》第 3 章“k 近邻法”学习笔记](https://www.liwei.party/2019/02/17/machine-learning/k-nearest-neighbors/) | https://www.jianshu.com/p/11d0ee7d9e5f | | [《统计学习方法》第 4 章“朴素贝叶斯法”学习笔记](https://www.liwei.party/2019/02/21/machine-learning/naive-bayes/) | https://www.jianshu.com/p/9a12fe2957db | | [《统计学习方法》第 5 章“决策树”学习笔记](https://www.liwei.party/2018/11/26/machine-learning/decision-tree/) | https://www.jianshu.com/p/8cdd65cfb121 | | [《统计学习方法》第 6 章“逻辑回归”学习笔记](https://www.liwei.party/2018/11/27/machine-learning/logistic-regression/) | https://www.jianshu.com/p/c64fba1f2fd2 | | [《统计学习方法》第 6 章“最大熵模型”学习笔记](https://www.liwei.party/2018/11/28/machine-learning/principle-of-maximum-entropy/) | https://www.jianshu.com/p/350887b5b919 | | [《统计学习方法》第 7 章“支持向量机”学习笔记](https://www.liwei.party/2018/11/29/machine-learning/support-vector-machines/) | https://www.jianshu.com/p/67fc312373de | | [《统计学习方法》第 8 章“提升方法”学习笔记](https://www.liwei.party/2018/11/30/machine-learning/boosting/) | https://www.jianshu.com/p/fd46d8c78e29 | | [《统计学习方法》第 9 章“EM 算法及其推广”学习笔记](https://www.liwei.party/2018/12/01/machine-learning/expectation-maximization-algorithm/) | https://www.jianshu.com/p/6c8274bbb9b9 | | [《统计学习方法》第 10 章“隐马尔科夫模型”学习笔记](https://www.liwei.party/2018/12/02/machine-learning/hidden-markov-model/) | | | [《统计学习方法》第 11 章“条件随机场”学习笔记](https://www.liwei.party/2018/12/03/machine-learning/conditional-random-field/) | | ## 其它机器学习文章 | 文章链接 | 简书 | | ------------------------------------------------------------ | ---- | | [二分类问题常见的评价指标](https://www.liwei.party/2019/02/25/machine-learning/metric/) | | | [K-means 算法](https://www.liwei.party/2019/02/23/machine-learning/k-means/) | | | [梯度下降法](https://www.liwei.party/2019/02/23/machine-learning/gradient-descent/) | | | [线性回归](https://www.liwei.party/2019/02/23/machine-learning/linear-regression/) | | | [使用 NumPy 提供的特征分解与 SVD 分解实现 PCA](https://www.liwei.party/2019/02/21/machine-learning/do-pca-with-numpy/) | | | [使用 apriori 算法分析春晚主持人名单](https://www.liwei.party/2019/02/22/machine-learning/analyze-cctv-new-year-s-gala-presenter-with-apriori/) | | | [朴素贝叶斯算法应用:垃圾短信分类](https://www.liwei.party/2019/02/21/machine-learning/naive-bayes-for-spam-classification/) | | | [朴素贝叶斯算法应用:文档分类](https://www.liwei.party/2019/02/21/machine-learning/naive-bayes-for-document-classification/) | | | [关联分析之 Apriori 算法](https://www.liwei.party/2019/02/18/machine-learning/apriori/) | | | [SVD 奇异值分解理论推导](https://www.liwei.party/2019/02/18/machine-learning/svd/) | | | [LDA 线性判别分析公式推导](https://www.liwei.party/2019/02/18/machine-learning/lda/) | | | [信息熵的范围](https://www.liwei.party/2019/02/18/machine-learning/entropy/) | | | [白话“主成分分析” 1 :主成分分析用于降维的思想](https://www.liwei.party/2019/02/17/machine-learning/principal-component-analysis-1/) | | | [白话”主成分分析“ 2 :通过主成分分析复习“线性代数”](https://www.liwei.party/2019/02/17/machine-learning/principal-component-analysis-2/) | | | [白话“卡方检验”](https://www.liwei.party/2019/02/11/machine-learning/chi-square-test/) | |